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Stochastic contribution to the anchoring energy: Deviation from the Rapini-Papoular expression

A. L. Alexe-Ionescu,? G. Barbero,?> Z. Gabbasova,*> G. Sayko,4 and A. K. Zvezdin®*
! Department of Physics, Polytechnical Institute of Bucharest, Splaiul Independentei 313, R-77216 Bucharest, Romania
’Dipartimento di Fisica del Politecnico, Corso Duca degli Abruzzi, 24-10129 Torino, Italy
3Laboratoire de Physique des Solides, Universite de Paris Sud, Batiment 510, 91405 Orsay Cedex, France
General Physics Institute of the Russian Academy of Sciences, Vavilova 38, 117942 Moscow, Russia
’Dipartimento di Fisica, Universita della Calabria, 87036 Arcavacata di Rende, CS, Italy
(Received 10 June 1993; revised manuscript received 14 February 1994)

The effect of a stochastic contribution to the surface energy, coming from the direct interaction be-
tween an orienting film and a solid substrate, is considered. It is shown that in the hypothesis in which
the nematic liquid crystal orientation coincides with the film orientation, the well known Rapini-
Papoular expression for the anisotropic part of the surface energy is modified. More precisely the an-
choring strength, connected with the square of the sine of the deformation angle, is renormalized. Fur-
thermore, there appears an additional contribution, proportional to the fourth power of the same quanti-
ty, whose coefficient is equal in modulus and opposite in sign. The physical origin of the considered
effect is connected with the elastic contribution to the surface energy of the film.

PACS number(s): 61.30.—v

I. INTRODUCTION

Nematic liquid crystals are anisotropic fluids [1]. They
are formed by strongly asymmetric molecules, which in a
first approximation can be considered of cylindrical
shape. The ratio length over diameter is usually larger
than 2-3. Due to the existence of intermolecular forces
such as the Van der Waals one, the major axes a of the
molecules forming the nematic phase tend to be parallel.
The average orientation, in a statistical sense, of the
molecular axis is called the director and is usually indi-
cated by n. In the absence of external interactions, n is
indeterminate. The n orientation in the bulk can be fixed
by means of an external field, e.g., an electric or magnetic
one. In a real sample, of finite thickness, the n orienta-
tion depends on the surface treatment. It is experimen-
tally known that a nematic liquid crystal in contact with
a solid surface tends to be oriented in a well defined
manner, dependent on the surface considered [2]. In the
absence of bulk constraints, this direction is called the
easy direction. From a phenomenological point of view,
it is useful to introduce the idea of the anisotropic surface
potential f(n,), where n; is the surface director. By
means of f(n,) the easy direction  is defined by

af /an, =0, (1)

in the absence of bulk constraints. In the event that a
bulk deformation is imposed, for instance, by means of an
external field, the surface orientation of the nematic
liquid crystal may change or not. In the first case the an-
choring is called weak, in the second case strong. The
most important case, from the application point of view,
is the weak anchoring case, because the threshold fields
necessary to induce a deformation in special geometries
are a decreasing function of the anchoring energy [3].

Long ago Rapini and Papoular proposed for the aniso-
tropic surface potential the expression
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f=—iwmmw?, (2)

in which W is called the anchoring strength and 7 is the
above mentioned easy direction [4]. Possible deviations
from expression (2) can be due to different physical ori-
gins. For instance, if the flexoelectric properties of the
nematic phase are considered, the effective surface poten-
tial can contain a fourth power in (n,-#), having electri-
cal origin [S]. Furthermore, if one takes into account
that nematic materials are quadrupolar ferroelectric
media, to the gradient of order near the surface, it is pos-
sible to associate an electric polarization [6]. To this po-
larization is connected an electrostatic self-energy de-
pending again on (n,-7)* [5]. All the calculations and
models are based on the hypothesis that the surfaces are
homogeneous. In this paper, we will show that the ran-
dom nature of the surface introduces a fourth order term
in the equivalent surface energy, even if the flexoelectrici-
ty and the ferroelectric quadrupolar nature of the nemat-
ic phase are neglected.

For the sake of simplicity, we consider a simple model
in which the orienting film [like a Langmuir-Blodgett
(LB) film] is monomolecular and formed of rodlike mole-
cules. The mean orientation of the film is due to the in-
teraction between the molecules forming the film itself
and between the molecules of the film and the substrate
over which the film is deposited. Furthermore we sup-
pose that the nematic liquid crystal orientation follows
that of the orienting film. This is equivalent to supposing
that the film is not compact. The molecules of the nemat-
ic liquid crystal may enter in the holes (free places)
present in the structure of the film. In this manner the
nematic molecules in “contact” with the film are oriented
by steric interaction (with the molecules of the film).
Then this first layer of nematic molecules orients the bulk
nematic liquid crystal by means of the anisotropic inter-
molecular interaction characterizing the nematic phase.
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This model of the interface LB film-nematic liquid crys-
tal was proposed some years ago by Hiltrop and
Stegemeyer [7]. It has been recently reconsidered by
Komitov et al. and by Alexe-Ionescu et al. to analyze
the temperature-induced surface transitions in nematic
liquid crystals [7].

Our paper is organized as follows. In Sec. II the elastic
theory of a monomolecular orienting film is described. In
Sec. III the presence of a stochastic surface field is con-
sidered. There we will show that the stochastic part of
the surface field is equivalent to a fourth order term in
(ng-m). In Sec. IV the main conclusions of our paper are
stressed.

II. ELASTIC ENERGY DENSITY
OF A MONOMOLECULAR FILM

Let us consider a monomolecular film formed by rigid
rodlike molecules of length /. Let m be the direction of
the molecular major axis. Due to the interaction of the
molecules and the substrate we have a film with two-
dimensional (2D) order. One end of each rod is attached
to the solid substrate in a quasiregular pattern, whereas
the other end is free. In this model, a molecule of the
film may bend with an angle ¢ under the action of the
direct interaction with the substrate and the interaction
connected with the other molecules of the film. We will
use a Cartesian reference frame having the x and y axes
parallel to the solid surface, and the z axis normal to it.
By using a molecular approach we want to evaluate the
elastic energy of the monomolecular film. The starting
point is the assumption of a two body interaction of the
kind

g(m,m’,r)dXd3', (3)

between the surface elements d2,dX’, where m and m’
are the directions of the molecular major axis at R and
R’, respectively, and r=R’'—R [8]. In our analysis we
suppose that the order of the film is perfect and hence m
coincides with the statistical average of the molecular
major axis of the molecules forming the film. In a contin-
uum description the vector m (which may be considered
of modulus 1) depends on the coordinates R of the con-
sidered point on the solid substrate: m=m(R).
g(m,m’,r) is the intermolecular interaction energy. It is
supposed short range, ie., g(m,m’,r)=0 for |r|>p,
where p~1/V o and o is the surface density of the mole-
cules of the film. This is equivalent to stating that we
neglect long range electrostatic contributions in the in-
teraction energy between the molecules of the film. These
long range terms may be analyzed separately, as shown in
[7].

In order to express the excess energy associated with a
surface distribution of m, let us suppose

m'=m(R')=m(R)+8m , 4)

where |6m| <<1. This hypothesis means that in our
analysis m is considered a macroscopic quantity and
hence changes over macroscopic distances d >>p. Only
in this case it is possible to build an elastic theory for the
orienting film. In this frame, g(m,m’,r) may be expand-
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ed in power series of 8m. Simple calculations give
g(m,m',r)=g(m,m+86m,r)
=g(m,m,r)+A;8m; +3pu,;8mdm; , (5)
where
d’g

og
om;/dm;

om;

i » and p; =

dm=0

) (6)
dm=0

and g(m,m,r) is the uniform part of the interaction ener-
gy. Equation (5) holds because g(m,m’,r) is supposed an
analytical function of the scalar quantities m-m’, m-u,
and m'-u, where u=r/|r|, of the kind

gmm’,r)= 3 C,, (r)(m-m)m-u)(m’u),
a,b,c

where the expansion coefficients C, , .(r) depend only on
the modulus of ». By means of this expression for g it is
possible to evaluate the tensors A; and p;; given by (6).
But this is not important for our analysis and we will not
enter into this kind of calculations. They may be useful
to connect the elastic constants of the film to the inter-
molecular interaction characterizing the film itself.

In the hypothesis that the interaction range of the in-
termolecular forces is small, 8m; may be expanded in
power series of r as

8m;=m; (R)x,+im; [ R)x,xp @

where m; ;(R)=(3m; /3x;)g, and x, are the Cartesian
components of r. Since we are dealing with a macroscop-
ic theory, |8m;| must be very small for 0< |r| <p. This
implies, as follows from (7), that |m; .| <<1/p and
|m; 48l <<1/p*. Consequently, in a continuum descrip-
tion the vector m has to change smoothly with R. In the
opposite case in which |m; ,|~1/p and |m; 44 ~1/p%
the |8m;| are no longer small quantities and the elastic
approximation (5) does not work well. However, since we
are interested in nonhomogeneities appearing over a scale
very large with respect to p, the elastic approximation
works. Hence in the following we will assume that m; ,
and m; g satisfy the above mentioned inequalities.
By substituting (7) into (5) one obtains

g(m,m’,r)=g(m,m,r)+A,(r)x,m; ,(R)
+1{A,(r)m; 4R)
+y.u(l')m,’a(R)mj’ﬂ(R)}Xaxp . (8)

Equation (8) gives the interaction energy between two ele-
ments characterized by the orientations m=m(R) and
m’'=m(R’'=R+r), whose relative position is r, in terms
of the spatial derivatives of m. It is important to
remember that g rapidly decreases with |r|, like A; and
;- Furthermore, in the elastic limit,

|Aix gm; ol >>|(Aim; ggtpim; om; g)xoxgl

as follows from the above discussion concerning Imi,al
and |m; ,gl.
In the mean field approximation, the energy of the film
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f(R) at the point R is obtained by integrating g over
rE(x,y). By using expression (8) we obtain
fR)= [ glm,m',0)d3’
=fo(m)+A;;m; o(R)+IN;pm; op(R)
+3Mj0pm; o R)m; 4(R) 9)

where X means that the integration over r is extended
over the range of the intermolecular forces giving rise to
the film. In (9) we have put

fom)=1 [  g(m,m,nd3’, (10)

A=1[, Mnix, a3, (11
and, furthermore,

Nia5=%f2wki(r)xax3d2’ , (12)

M,.ja,3=gf2wp,.j(r)xaxﬁdz' . (13)
From (12) one derives

Niag=Niga - (14)
Furthermore, from (13) and (6), it follows that

Mijop=Miap=M;jgs=M;ip, . (15)

The meaning of the different terms introduced before is
very simple. f(m) is the surface energy density of a uni-
formly oriented film (m position independent), whereas
A, N, and M play the role of elastic constants. Tensors A,
N, and M have to be decomposed by using the elements of
symmetry of the film. In our case in which the film is as-
sumed flat, its elements of symmetry are the geometrical
normal k (parallel to the z axis) and the vector m [9].

Let us consider first fy(m). It can be expanded in
power series of m-k, or in terms of Legendre polynomi-
als. In the event of uniform m, the energy of the film
alone reduces to f(m). Of course the film is not alone,
because it is in contact with the solid substrate. Hence
we have to take into account also the direct interaction
between the molecules of the film and the molecules of
the substrate [10]. In the hypothesis of isotropic solid
substrate, the surface free energy due to the direct in-
teraction is of the kind ¥(m-k). This energy depends on
the Van der Waals interaction, dielectric interaction, and
so on. It depends on the physical properties of the solid
substrate. In the ideal case of a homogeneous surface, ¥
is position independent. But as is well known real sur-
faces are never homogeneous. More precisely, on average
they have approximately the same properties, but from
point to point they change in a more or less stochastic
manner. Hence we can write

Y(m-k,r)=9,,(mk)+8¥(m-k,1) (16)

where 6¥(m-k,r) takes into account the stochastic part of
the direct interaction between the film and the solid sub-
strate (due, for instance, to free ions or local irregulari-
ties). The total surface energy (due to the intrinsic part
and the direct interaction) is then
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Fy=fo(m-k)+¢y(m-k,r)=Gy,(m-k)+6¢(m-k,r), (17)
where
Gy(m-k)=f,(m-k)+1,,(m-k)

is the uniform part of the total surface energy.

Let us imagine that the uniform film on the considered
surface tends to be in homeotropic alignment (i.e., m||k).
In a first approximation we assume for G,(m-k) the ex-
pression

Golm-k)=—1W(mk)?.

The total surface energy F, is then given by

F0=—-§W(r)(m-k)2 R (18)
where
Wir)=W+AW(r), (19)

in which AW(r) is the stochastic contribution to W.

III. SOLUTION OF THE PROBLEM

Let us suppose that for m position independent f(R) is
a minimum. This implies that the tensor A, connected
with spontaneous deformations, has to be identically
zero. Let us suppose, furthermore, that m is everywhere
parallel to the (x,z) plane. This hypothesis is very restric-
tive, but, since we want only to analyze the renormaliza-
tion of the surface energy introduced by the stochastic
component of the direct interaction film-substrate, it can
be reasonably accepted. By indicating with € the angle
made by m with k, the total energy of the film is given by

¢=f2%[k(V6)2+ W(r)sin?}dS , (20)

where 2 is the surface of the sample, W(r) is given by Eq.
(19), and V=i9/3x+jd/dy. In (20) k takes into ac-
count the elastic properties of the film, coming from the
tensor M defined by (13). On the other hand, the tensor N
connected with second order derivatives of m has been
neglected, since it can be integrated over X, and it
reduces to a line contribution. The m distribution in the
film is the one minimizing ¢ given by (20). By minimiz-
ing (20) we obtain

kAO— W(r)sinf cosf=0 , (21)

where A=09?/0x2+3%/3y% By extracting the fluctuating
part of W(r), as was done in (19), and putting

6(r)=0+86(r) , (22)

where ® is position independent, we can linearize Eq.
(21). In this limit Eq. (21), in operational form, is written

£86(r)= MZV(”sin(z@) , (23)
where
L=A—a(®), (24)

and
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a(®)= %cos(Z@) . (25)

560(r) may be determined by means of the Green func-
tion. Simple calculations give

— NAW(T) :
86(r)= [ G(r,r')==; sin(20)dr’ , (26)
where G(r,r') is the Green function of Eq. (23). Let us
suppose now that
(y(r)y(r'))=D exp[—|r—r'|/R,], 27

where y(r)=AW(r)/k, D, is the dispersion, and R, is
the correlation length of the random distribution y(r).
This kind of correlation function satisfies the fundamen-
tal property of stochastic systems, lim,_ ,{y(r)y(0))
=0. By taking into account (27), the effective surface en-
ergy defined by

_1

a=5 [ $rdr (28)
is found to be
¢or= LW sin’®@+(27)’D, R2kI(aR} )sin*(20) , (29)
where

1 lnaR72,
+
1—aR?  2(1—aR})”

I(aR2)=

In(1+Vv'1—aR?2)
(1—aR1 )"

(30)

In fact, by taking into account that the Green function of
(23) is

1
GK)=———",
K?+a(®)
we obtain
(y(r)86(r))
w0, ., © 2 iKrcosX — /R
=—2r["rdr ["KdK [ dXK2+a(®)

which can be written in the form
=—(2 2 [ 'dr’
(r(0)80(r)y =—@m? [ “rdr
fw K dK J,(Kr') _, ‘/R,,
0 K?+a(®)
if the Bessel function of zeroth order

1 27
J(Kr)= iKr cosX X
0( r) . fO e d

is introduced. By observing that

©» dKK

_ean = Val®)
. K2+a(®)Jo(Kr) Ko(Va(@®)r),

where Ky(V'a(®)r) is the modified Bessel’s function, and
substituting this function into the expression of
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(y(r)86(r)) and integrating over r, we obtain [11] Eqgs.
(29) and (30) reported above.

The fluctuation additive term present in (29) arises
from the expression

__k Ny
Ap= f2<y(r)9(r ))sin(20)d3 . 31

Equation (29) clearly shows that the inclusion of a sto-
chastic spatial variation of the surface field, caused by the
direct interaction between the film and the substrate,
gives rise to a new functional form of the effective surface
energy [12]. More precisely, the usual anchoring
strength, in the Rapini-Papoular sense, is renormalized:
W is substituted by

Weg=W+AW, (32)
where
— 2 2 2
AW=Q2m)'D,R}I(aR})k . (33)

Furthermore, a new term appears, proportional to sin*®
and characterized by a coefficient equal to AW, but with
opposite sign.

Until now we have limited our analysis to the energy of
the film. However, as we have already stressed in the In-
troduction, in the hypothesis that the film is not compact
the bulk orientation of the nematic liquid crystal is due to
the steric interaction between the first nematic layer and
the film. Consequently, the anchoring energy of the
nematic liquid crystal coincides with the anchoring ener-
gy of the film. Of course the total surface energy of the
nematic liquid crystal may contain, besides the steric
term discussed above, other contributions due, for in-
stance, to dispersion interactions. However, the steric
one is usually the most important in the interface be-
tween the nematic liquid crystal and the film. Hence, at
least for this kind of interface, our theory is expected to
work well.

IV. CONCLUSIONS

The presence of a stochastic term in the direct interac-
tion film-solid-substrate introduces a spatial variation of
the vector m characterizing the orientation of the film.
In the event that the correlation length of the stochastic
function under consideration, R,, is small enough, the
film may be considered uniformly oriented, but its surface
energy is no longer given by the Rapini-Papoular expres-
sion. The effective surface energy contains the usual term
proportional to sin’®, whose coefficient is renormalized,
as shown by Eq. (32). It contains, furthermore, a term
proportional to sin*®, whose coefficient is —AW. It fol-
lows that the effect of a stochastic contribution to the
surface energy is equivalent to the presence of the self-
energy connected to the flexoelectric contribution, or to
the order electric contribution.

We can estimate the order of magnitude of AW given
by Eq. (33). The surface elastic constant of the film may
be obtained by multiplying the bulk elastic constant of
the film K by the thickness of the film /. We assume K of
the same order of magnitude of the elastic constant of a
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nematic liquid crystal: K ~107° dyn [1], and /~10 A.
Consequently k ~KI~10""® erg. The anchoring energy
is of the order W~10"2 erg/cm? [2]. Furthermore, as
follows from Eq. (27),

2
4

D:K

14

w W

K g .

<AW(r) AW(0)>= lW

By assuming 0 ~10"! and I~1, a simple calculation
gives AW ~1072 erg/cm?, i.e., of the same order as W.
This simple estimation shows that the influence of the
stochastic part may be very important. In particular, we
want to underline that a term proportional to sin‘®
strongly modifies the phase diagram relevant to the sur-

face transitions induced by temperature or by external
fields [13,14].
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